The VIIRS Informational Data Set

The following information on the design, construction, operation, and performance of the VIIRS instrument is submitted for your review and approval for release to the operational and scientific user communities, as well as to the public at large. This large volume of data will be supporting an even larger scientific audience than ever before due to the long-term climate data support that VIIRS will be providing to that community. 

The information contained herein is not proprietary or competition sensitive. No manufacturing processes are discussed. 

The material is organized at the VIIRS subsystem level. Each subsystem section is hyperlinked to this page. Attached are the VIIRS ATBDs as well as the VIIRS Foldout Information Sheet. 

VIIRS Subsystems:
1. Selected Sensor Performance Parameters
2. Mainframe Structure
3. Rotating Telescope
4. Optics
5. Cryoradiator
6. FPA Dewar
7. FPA Layouts
8. Electronics Module
9. Radiometric Performance/Band to Band Registration

10. EDRs
Selected Performance Parameters 

Physical Characteristics (Volume, Dimensions, Mass, Power):

[image: image1.png]High Performance Fore Optics TMA
is Designed for Ease of Manufacture

— EPD =190.5 mm
— FOV = 1.427° (scan) x 0.815° (track)

— All Conic Design (Parabola, Hyperbola, Parabola)
+ No General Aspheres

+ Ease of Fabrication, Alignment and Test oo
At Both Component and System Level M2

IIP for Stray Light Rejecting Field Stop
Telescope Exit Pupil Located on HAM
« Constant Rate Rotating Telescope

« Fold Mirror #1 Rotates with Telescope Assembly

« Constant Rate, Double-Sided HAM
Rotates at 1/2 Speed of Telescope Assembly Fold 2
(shown in plane)

« Off-Axis, 4X Afocal TMA
\ Fore

Collimated Output
to Fixed Aft Optics




VIIRS Band Set Compared to Current Sensors

[image: image2.png]Energy On Detector Insensitive
to Microlens Array Tolerances

Tolerance Manufacturing Applied A 100% EOD
Parameter Capability Perturbation Diameter
Radius 1% 2% <0.1 pixel
Index 0.001 0.002 <0.1 pixel
Thickness 0.001" 0.002" <0.1 pixel
Decenter (x,y) 0.0004" 0.001" <0.1 pixel
Decenter (z) 0.0007" 0.001" <0.1 pixel

Vendors Consulted for Current Microlens Array Manufacturing Capabilities
CodeV Model Perturbed with Overly Conservative Values to Ensure
Comfortable Margin, Lower Risk and Reduced Cost

Effect of Relaxed Manufacturing and Alignment Tolerances on

100% Energy on Detector (EOD) Diameter Insignificant

100% EOD Maintained Until Image “Walks Off” Detector due to

Microlens Array to Detector Array Misalignments

Baseline Detector Sizes Provides Sufficient Margin to Maintain 100%
Energy even with Relaxed Perturbations




VIIRS Spatial Resolution for Imagery and Radiometric Bands:

[image: image3.png]



VIIRS Aggregation Approach:

[image: image4.png]Fore Optics Requirements

SPECIFICATION TELESCOPE REQUIREMENT | VERIFICATION
DESCRIPTION RQMT. DESCRIPTION VALUE METHOD

PS154640-111 PQ vibration X, Y, Z axes 16.8,9.5, 9.7 grms
PS154640-112 PQ temperature range 41°C 10 60°C
PS154640-115 Bearing runout 5 arc-sec.
PS154640-115 Balance 0.7 kg-mm
PS154640-114 Telescope motor/encoder (norm.) |4.4 W pk, 3.4 W avg|
PS154640-114 Telescope motor/encoder (stow) |3.4 W
PS154640-114 Angular Momentum Compensator | 2.3 W pk, 1.9 W avg

SPECIFICATION HALF ANGLE MIRROR (HAM) | REQUIREMENT | VERIFICATION
DESCRIPTION RQMT. DESCRIPTION VALUE METHOD

P$154640-111 PQ vibration-X axis 17.6,9.5,8.8 grms

P$154640-112 PQ HAM motor/encoder temp. | -39°C to 63°C
range

PS154640-115 Bearing runout 5arc-sec.

PS154640-115 Balance 0.7 kg-mm

P$154640-114 HAM motor/encoder (normal) 2.3W pk, 1.9 W avg)

Fore Optics weight
Thermal distortion uncertainty

B = e

e





Projected VIIRS Performance Margins:

[image: image5.png]Three Mirror Rotating Telescope Housing
and Baffles Meet Mass and Inertia Requirements

Rotating telescope mass (based on aluminum) estimated at 8.5 kg with
counterweight

Rotating mass inertia of .25 kg-m*2
Diamond point turning/bolt together approach minimizes assembly cost
Baffles can be assembled then inserted into housing

Low solar absorptance exterior white paint and black Aeroglaze Z-306
interior designed to meet stray light requirement

Tertiary
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VIIRS Band Set & EDR Utilization:

VIIRS Perspective Drawing:
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VIIRS Operational Flow Through:

[image: image8.png]Margin Available at PDR Assures
Low Risk Development

gin bands

Performance Margin: o

* SNR > 40% for o0
majority of bands

* MTF > 10% for
majority of bands

Accommodation Margins:

« Mass - 160 kg predicted, 176 kg specified, SRD NTE is 200 kg;
provides 10% growth from predict to specification, 20% to
NTE

« Power (operational average) - 134 watts predicted, 170 watts
specified, SRD NTE is 300 watts; provides 20% margin from
specification, 68% to NTE




VIIRS Major Subsystems/Components:
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VIIRS Operational Flexibility:
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[image: image11.png]Single Sensor Optimum for VIIRS Suite




VIIRS Optical Train Design:

VIIRS FPA Layout:
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VIIRS Electronics Design Characteristics:
[image: image13.png]Single Sensor VIIRS Improves
Data Quality Reduces Integration Costs
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e (SemiFs) Full-aperture Calibrators:
Reflective Emissive
Spectralon  V-Groove
Solar Diffuser ~ Blackbody
~ (TRMM-VIRS) ~(MODIS Design)
-

! Diamond-turned Postpolished
Passive Flat-panel turned Pos
Radiative Cooler All-reflective Optics:
(Raytheon IR&D)  Rotating Telescope
3-mirror Anastigmat
- Aft Optics
4-mirror Anastigmat

Stand-alone Electronics Module
+ Reliable, redundant design

+ Reprogrammable in flight

- EMI-tight package

Scan Control
High-performance + MODIS & SeaWiFs
2nd-generation Based Optical Encoders
Focal Planes + <30 prad Uncertainty




VIIRS Electronics:

[image: image14.png]VIIRS Designed For
Operational Flexibility

All functions individually commandable
— Exceptional versatility for operations & diagnostics

Macro Commands (stored sequences) simplify commanding
& reduce uplink data requirements

— All macros reprogrammable
Time tagged commands allow delayed execution

— Economically provides for 30 day autonomous operation
Swath widths & locations individually programmable by band

— Upon command, could provide improved-resolution views
of selected targets near nadir

Diagnostic Mode features improved versatility

— Telemetry system can “dwell” on any telemetry point to
increase 'sample rate

— Data processing functions (aggregation, data
compression) can be individually enabled & disabled.
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Mainframe Structure

[image: image16.png]All-2nd Generation FPA Technology -
Outstanding Performance & Low Risk

« VisNIR PIN diode array/ROIC hybrid
colocated with Day/Night Band
monolithic CCD

+ S/IMWIR & LWIR FPAs: Photovoltaic
HgCdTe

— Integrated “Microlens” arrays
reduce background noise

« All FPA performance parameters
meet Threshold requirements &
approach Objectives

« Optical alignment of all FPAs
provides optimum band-band
registration





[image: image17.png]VIIRS Electronics Block Diagram
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[image: image18.png]Block-Redundant Electronics Module
is Versatile, Reliable & Economical

Module contains two complete sets of circuits, providing
complete single failure tolerance.

Each Module can perform all electronics functions

— Command decoding & sensor timing & control via
Single Board Computer & FPGA-based Digital
Preprocessor

— Data acquisition from all Focal Plane Assemblies
Commercial off-the-shelf Processors & Power Supplies
— Radiation-hard, space proven

Low-risk electronics packaging approach meets EMI
requirements

— Single box delivered to Integration & test




Rotating Telescope

[image: image19.png]VIIRS Opto-Mech Assemblies Take
Advantage of Heritage and Demo Hardware
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 [image: image20.png]VIIRS Meets All Instrument-to-Spacecraft
Requirements With Mass and Power Margin

SRD NTE VIIRS Design
Allocation Prediction
Envelope (cm) 129 129 velocity Meets
65 65 nadir
138 138 anti-solar
Mass (kg) 200 176 w/margin 160
Power (W) 300 240 peak* 134 avg.
170 orbit avg.
High Rate Data 8.0 8.0 orbit avg. 6.7 orbit avg.
(Mb/sec) 10.5 10.5 peak 8.3 peak
Low Rate Data 230 230 79
(kb/sec)

*Operational mode with calibration




[image: image21.png]Optics Stability Enhanced by
Separate Electronics Module
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[image: image22.png]Compact, All Reflective Optical Design




 

[image: image23.png]Sensor Design Composed of
Modular Optical Subassemblies
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 [image: image24.png]Compact Optical Design Satisfies SRD Envelope
Requirement

All Optical Materials and Subassemblies Have Space
Qualified Heritage

Diamond Turned, Bolt Together Telescope and Aft Imager
Ensure High Performance, Low Cost Assembly

Near Telecentric Dewar Design Provides Excellent
Spectral Separation, Distributed Out-of-Band Blocking
and Background Noise Reduction

Manufacturing Tolerances Included in CodeV Model
Generous Margins Exist in Optical Fabrication, Making
Assembly and Testing Streamlined




Optics [image: image25.png]VIIRS All Reflective Approach:
A Natural Design Progression

The MODIS Design is High Performing, but the Aft Optics
Alignment was Time Consuming

DPT Manufacturing Technology at the Time of MODIS Design
was Less Mature and Therefore Infeasible for MODIS

DPT Bolt Together Optics Technology Improvements Now
Support an All Reflective Design

— Permits Reflective Aft Optics FMA Imager (vs. Refractive)

Elimination of Refractive Elements Reduces Crosstalk, Ghosting,
Bulk Scatter, Aberrations and Alignment Cost

Superior Spectral Transmittance and Image Quality Reduces
Number of Focal Planes

An All Reflective Design is a Natural Progression for a Superior
Performance, Lower Cost Instrument




[image: image26.png]Radiometer Pathfinder Rotating Telescope

Telescope Housing and Baffle Set Telescope Mirror Set





[image: image27.png]Aft Optics FMA Maintains
High Performance Over Expanded FOV

Compact, All Reflective Imager
— EPD = 47.625 mm

— FOV = 5.71° (scan) x 3.26° (track)

— FI6 System M4

Off-Axis FMA Requires
General Aspheres to Achieve
Imaging Performance Aft M2

IIP Allows Distributed

Spectral/Spatial Filtering Colimated

and OOB Blocking Input from

Accessible, Real Exit Pupil ~ Fore Optics

Relayed to IR Detectors by

Microlens Arrays (not shown)
Image Plane AOIs Minimized





[image: image28.png] Back End Optics Provide Spectral

Separation into Three FPA Channels
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[image: image31.png]~ Polarization Requirement Met in All Bands
With Margin Using Single Mirror Compensator
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[image: image33.png]Signal to Scatter Ratio

100

Baffle Design Meets DNB Performance
Requirement with Margin

Martin Black

3X Margin
Minimum Allowable SSR = 10

N

Aeroglaze Z306 Coating with Microballoons

30

40 50 60 70
Sun Angle (deg)

Data for Worst Case Scene = Night Scene (L = 4e-5 Wim2/sr)
Sun Angle is Measured Relative to Telescope Line-of-Sight

80

The Requirement for
SSR 210 is Derived
from Low Light Imagery
at Scene Radiance
Levels of 4E-5 W/m2/sr

Vanes Require High
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Suppression

Martin Black Coating
Yields SSR > 30




 [image: image34.png]Preliminary Wavefront Error
Allocation Is Achievable

“RMS WFE in waves at 632.8 nm





[image: image35.png]Tolerance Analysis Confirms
Robust Optical Design

Current Manufacturing Capabilities of DPT Technology Vendors
Validated by Recent Hardware Programs
— THEMIS, SBIRS Low Tracker, MFS3, EKV, Radiometer Pathfinder
Applied Tolerances Provide Margin over Current Vendor Capabilities
- Radius = 0.05% (0.02%)
- Tilts (ou,B,y) = 100 prad (50 prad)
- Decenters (x,y,z) = 0.001” (0.0005”)
Preliminary Monte Carlo Tolerance Analysis of VIIRS Optical Design
Confirms Ease of Fabrication, Assembly and Alignment
— MTF Degradation at VIIRS Spatial Frequencies Negligible
- Toleranced Performance Satisfies Preliminary WFE Budget
High Performance Optical Design is Robust, Stable and
Readily Manufacturable
Phase Il Detailed Tolerancing Study Will Determine Optimal Balance
of Tolerances to Further Maximize Producibility and Ensure
Cost Effective System



  [image: image36.png]High Performance Fore Optics TMA
is Designed for Ease of Manufacture

— EPD =190.5 mm
— FOV = 1.427° (scan) x 0.815° (track)

— All Conic Design (Parabola, Hyperbola, Parabola)
+ No General Aspheres

+ Ease of Fabrication, Alignment and Test oo
At Both Component and System Level M2

IIP for Stray Light Rejecting Field Stop
Telescope Exit Pupil Located on HAM
« Constant Rate Rotating Telescope

« Fold Mirror #1 Rotates with Telescope Assembly

« Constant Rate, Double-Sided HAM
Rotates at 1/2 Speed of Telescope Assembly Fold 2
(shown in plane)

« Off-Axis, 4X Afocal TMA
\ Fore

Collimated Output
to Fixed Aft Optics




[image: image37.png]Energy On Detector Insensitive
to Microlens Array Tolerances

Tolerance Manufacturing Applied A 100% EOD
Parameter Capability Perturbation Diameter
Radius 1% 2% <0.1 pixel
Index 0.001 0.002 <0.1 pixel
Thickness 0.001" 0.002" <0.1 pixel
Decenter (x,y) 0.0004" 0.001" <0.1 pixel
Decenter (z) 0.0007" 0.001" <0.1 pixel

Vendors Consulted for Current Microlens Array Manufacturing Capabilities
CodeV Model Perturbed with Overly Conservative Values to Ensure
Comfortable Margin, Lower Risk and Reduced Cost

Effect of Relaxed Manufacturing and Alignment Tolerances on

100% Energy on Detector (EOD) Diameter Insignificant

100% EOD Maintained Until Image “Walks Off” Detector due to

Microlens Array to Detector Array Misalignments

Baseline Detector Sizes Provides Sufficient Margin to Maintain 100%
Energy even with Relaxed Perturbations




[image: image38.png]Light-weight Mainframe Meets
Weight and Manufacturability Goals

Combination of bonding and bolting connects bulkheads and skins
Removable access panels facilitates installation of major assemblies
High load carrying bulkheads made with honeycomb cores and skins
Kinematic mount locations selected to maximize stiffness > 50 Hz




[image: image39.png]AFT OPTICS REQUIREMENTS

Requirement Requirement erification
Description Value Method
PS154640-111 PQ vibration-X axis 13 grms

PS154640-111 PQ vibration-Y axis 9.9 grms
PS154640-111 PQ vibration-Z axis 10.2 grms

PS154640-115 Weight 8.0 kg
PS154640-112 PQ temperature range -40°C to 63 °C
PS154640-113 Alignment to boresight 0.2 IFOV

and scan plane (at system level)|

PQ = protoqualification




Cryoradiator [image: image40.png]FMA Housing Carries Imaging
Optics and All Focal Planes

~_ Aluminum 6061-T6 Housing

LWIR &
S/IMWIR FPAs

VIS/NIR FPA & Day/Night CCD
inside Dewar




[image: image41.png]« VIIRS single 4 mirror imager
housing has machined
datums for all focal plane
assemblies




[image: image42.png]Cryogenic Module Includes
Cryoradiator and FPA Dewar

Cryoradiator

Aft Optics
Assembly




FPA Dewar

[image: image43.png]Cryogenic Module
Design Description

Passive 3-Stage Cryoradiator
* Cools IR FPAS to 80K with
51% EOL margin
h reliability over long life
+ Heritage-based design
+ Far less expensive than active co

DNB FPA Cooling Node

Cryoradiator Mounts (4)
+ Mainframe Interface \

Dewar Mounts

« 3for Beamsplitter Assembly
+ 3 for Aft Optics Assembly

EPA Windows
wswm Intermediate & Outer

EPA Dewar Assembly
« Attaches directly to Aft Optics Assembly for

cryoradiator cold stage

« Intermediate link connects dewar precise BBR
intermediate stage to cryoradiator « Maintains stable alignment of SIMWIR and
intermediate stage LWIR FPAs

« Flexible multi-layer straps minimize .

. 3-stage support structure minimizes heat load
mechanical load on dewar stages on cryoradiator

+ Vacuum seals enable bench test at 80K




FPA Layouts

[image: image44.png]Cryogenic Module Meets All
Design Requirements

Number Description Value Method
PS154640-111 PQ vibration-X axis 9.9 grms

PS154640-111 PQ vibration-Y axis 9.6 grms.

PS154640-111 PQ vibration-Z axis 11.5 grms

PS154640-115 Weight 19.4 kg
PS154640-112 PQ temperature range -25°C to 60°C

PS154640-112 IR FPA operating temperature 80K

PS154640-112 DNB FPA operating temperature | 251+2K
PS154640-112 Cold stage thermal margin at PDR | 45% min (7 K)

PS154640-112 Predicted cold stage heat load 107 mwW
(dewar/thermal link)

PS154640-113 Co-registration of focal planes 0.2 IFOV (at system level)
PS154640-115 Volume 91x 61x31 cm max.
PS154640-115 Mission life

PQ = protoqualification





[image: image45.png]Cryogenic Module Has Significant
Features and Benefits for VIIRS

Cryoradiator and dewar assemblies provide high reliability

and long life in a low cost, low risk design

VIIRS cryogenic module derived from flight-proven heritage

designs and demonstrated in laboratory hardware

Key Features

Benefits

Passive Cryoradiator

« Raytheon PRCs have proven orbit
life in excess of 15 years without
degradation

« Simple aluminum construction

« IR&D version built and tested

Meets VIIRS 15-year life requirement with
high reliability and very low risk

Low cost, low schedule risk, meets weight
reqm't.

Reduced risk for larger VIIRS
configuration

EPA Dewar
« Heritage-based design (TM, MODIS)
« Multiple stages minimize heat loss

« Stage supports are special
composite mat'l

« Sealed housing permits evacuation
«_Designed for ease of manufacture

Low risk

Allows use of cryoradiator

Stable optical alignment

Allows ambient bench testing for SI&T
flexibility

Low cost, low schedule risk





[image: image46.png]Four FPAs Cover Full Spectral Range





[image: image47.png]FPA Requirements Driven by System
Specification
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[image: image48.png]~Accelerated Day Night Band Development
Schedule Has Minimized Risk

* DNB CCD Risk Drivers Have Been
Mitigated
— Phase 2 Schedule Shortened
with CCD CDR

— Radiation Performance has
been Quantified
* Phase 2 Schedule
— PDR conducted 2/16/00
— TIM Conducted 3/21/00
— CDR conducted 5/9/00
* Radiation Response Addressed
— Double Band allows voting
— Test Data Validates Approach

* Specification and Interfaces
Defined





[image: image49.png]DNB CCD Architecture
Supports Large Dynamic Range

Stage 1a L(.D Kc} Characteristics

Xtrack: 15.4um
Downirack Chahnels: 672
Neutral Density Filter:

age #3: 35:1 reduction

Stage 1b

v Noise Floor:

0e-rms
Stage 2
Stage 3

Multiple Stages of Detector Registers are used to Manage Dynamic
Range and to Provide Redundancy for SAA Transient Effects
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[image: image53.png]Four FPAs Utilize Common Design Strategy
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Electronics Module
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[image: image56.png]FPA Predicted NEI Better Than Goal

VIIRS FPA Predicted vs Required NEI
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or Exceeds All Requirements
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[image: image58.png]Sensor Operation Controlled
by Electronics Module

+ Controls the Telescope and Half Angle Mirrors to
Image the Desired Scene upon the Focal Plane
Arrays

» Processes and Packetizes Science and
Housekeeping Data into the CCSDS Format

+ Communicates with the Spacecraft via IEEE
1394a (cable)

— Commands and Telemetry
— Science Data (High Rate and Low Rate Data)




[image: image59.png]Electronics Packaging
Facilitates Integration and Testing

Electronics
Module





[image: image60.png]Electronics Module Requirements
Documented in PS154640-114
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Data Rate Requirements
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[image: image64.png]- LRD Rate Requirement is Easily Met
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Focal Plane Outputs
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[image: image66.png]Challenging ASP Requirements
Addressed by Demonstration Hardware
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[image: image67.png]Daytimel/Nighttime Band CCA Provides
Single Event Effect Detection

Provides Timing to the Focal Plane Interface
Electronics (FPIE)

Detects Single Event Effects on the High Gain
Stages

Selects the Gain Stage Based on Signal Level
Passes Isolated Voltages to the FPIE and CCD




[image: image68.png]34 Different Aggregation Modes
Provide 5% Variation in HRI

Cloud SNR vs Scan Angle & Lunar Zenith Angle
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[image: image69.png]‘In-Scan Variable Aggregation & Truncation
Reduces Data Rate

Aggregation on Earth View Data Only
— Single Gain Bands Only
Truncation Performed after In-Scan Aggregation

— Gain Bits (if Applicable) Retained & Upper 12 bits
Retained

— Resultant Data Meets 11.6 ENOB

All Data Sent to LRD and to RICE sent after
Aggregation & Truncation

Aggregation Bypassed as a Unit in Diagnostic Mode

Truncation may also be Bypassed as a Unit in
Diagnostic Mode




[image: image70.png]Command|Telemetry CCA Provides
Hardware Control and Sensor Health & Status

* Provides Commands to Various Assemblies in
the Electronics Module
— Relay Pulse
— Digital Pulse
— Digital Level
* Reads Telemetry from throughout the Sensor
— Analog Telemetry
« Active
« Passive (Thermistors)
— Digital Telemetry




[image: image71.png]Single Board Computer (SBC) Controls
Spacecraft Interface and Sensor Operation

+ Communicates with the Spacecraft via 1394a
(cable)
— Commands
— Telemetry Packets
— Science Data Packets
« High Rate Data
* Low Rate Data
* Accommodates Uploads
— Table Uploads
— Software Patches and Revisions
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Raytheon Demonstration Program
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[image: image73.png]Velocity Stability & Sensor Disturbances
Requirements Allocated to Servo Controller
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SeaWiFS and MODIS Controllers
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Radiometric Performance
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[image: image77.png]Performance Summary for Low-gain
State of Dual-gain Bands
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EDRs

[image: image79.png]All Bands Meet Band-to-Band
Registration Requirements

Band-to-band Registration (worst case)
BAND-TO-BAND MISREGIS TRATION (PIXELS)

ERROR SOURCE Radiometric Bands Imaging Bands
Value | Units | Within FPAJFPA to FPA| Within FPA[FPA 10 FP

Dynamic Efiects

Scan Velocity Errors 0.0015 | Frac 0.076 0.076 0018 0018
Telescope Focal Length Error 0.0015 | Frac 0.057 0.057 00135 | 00135
Ekc Timing Jiter 8.0E-09| Sec | 9.06E-05 | 9.06E-05 | 1.81E-04 | 1.81E-04
Static Effects
Field Stop Misalignment 2 pm 0.0076 [ 0.0076 0015 0.015
Beam S plitter /At Optics Misalignment | 12 pm N/A 0012 N/A 0.024
Timing Adjustment Granukrity LIEO7[  Sec N/A 0.0012 N/A 0.0012
FP A misalignment 10 pm N/A 0.028 N/A 0.075
Differences In Telescope Distortion Variable 0.11 0.159 0.038 0.066
TOTALS (Percent Pixel Area Miste gistration) HSR Frac
SPECIFICATION (Max Misre gis tration) HSR Frac

MARGIN %

Refinement of aft telescope design or FPA layout can
further reduce telescope distortion component of BBR





[image: image80.png]Summary: Band-to-Band Registration and
LOS Pointing Knowledge Excellent
Raytheon Sensor provides Band-to-Band Registration
performance with margin, without resampling
Meets new Line of Sight Pointing Knowledge requirement
with margin
Combined with Spacecraft pointing performance as
specified in SRD, Raytheon Sensor provides excellent
Mapping Uncertainty performance
Meets Threshold Mapping Uncertainty requirements of all
EDRs
—Meets Objective Mapping Uncertainty levels of most EDRs,
approaches Objective on remainder
—Circular Error at nadir 123 meters
« Realistic Spacecraft and Sensor improvements would

provide performance approaching original Earth Location
specification of 67 meters




[image: image81.png]Our Algorithm PDR Design and Software Is
Adapted/Adopted from Heritage Algorithms

« Heritage Designs Include: MODIS, AVHRR, OLS,
and SeaWifs

* The Research software Implements the ATBDs
for EDRs, SDRs (gelocation and calibration), and
Intermediate Products

* Our design includes the linkages between
intermediate products (e.g cloud mask) and the
EDRs

* Our software follows procedures outlined in
Raytheon’s software development process (e.g.
“spiral development” Model, CMM level-2)




[image: image82.png]Obtained a “Peer-reviewed” Sound
Theoretical Basis For Every EDR

Considered all reasonable alternatives in trade space

Ruled out candidates with “unreasonable”

requirements on sensor or external data

Adopted, adapted, or developed baseline approach,

driving development risks to low

— Focused on maximum reuse of recent technology, with
development and refinement where needed

— Used MODIS/other teams’ efforts as algorithm
development and design starting points

— Peer-reviewed ATBDs across three iterations

— ATBD review process internal to Raytheon with use of
outside consultants followed EOS approach




[image: image83.png]Algorithm Development Status (1 of 3)
and Delivery of the V3 ATBDs
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[image: image84.png]Algorithm Development Status (2 of 3)
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[image: image85.png]Algorithm Development Status (3 of 3)
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[image: image86.png]Algorithm Requirements Accomplished

Algorithm Theoretical Basis Documents (ATBDs) completed and delivered
at PDR ( SRD 3.2.1.1) for all EDR’s, SDRs, Intermediate products and
applications.

Research Software that implements each of the EDRs completed,
demonstrated and delivered at PDR.

Algorithm Architecture, RDRs, SDRs, and External Interfaces defined to
Module level and below for all EDRs (SRD 3.2.1.2)
Processing pipeline identified for each EDR module (SRD 3.2.1.5)

— Demonstrated Pipelines to show low risk to fit the 20 minute timeline
System and Algorithm Subsystem Specifications established with
Stratification per SRDX4.3.3-3 based on current SRD 3.2.1.1
Error Budgets identified for each EDR, including ancillary/auxiliary and
sensor data inputs per SRDX4.3.3-2 and 4.3.4-
EDR verification across stratification per SRDX4.3.3-1 based on assumed
sensor performance shows VIIRS can meet requirements




[image: image87.png]Objective EDRs
*“Near Objective” Imagery, SST & >Half Category Il EDRs
+ Subjective Weighted Average EDR Attribute Performance

Excellence: Low-Risk
Near-
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[image: image1.png]High Performance Fore Optics TMA
is Designed for Ease of Manufacture

— EPD =190.5 mm
— FOV = 1.427° (scan) x 0.815° (track)

— All Conic Design (Parabola, Hyperbola, Parabola)
+ No General Aspheres

+ Ease of Fabrication, Alignment and Test oo
At Both Component and System Level M2

IIP for Stray Light Rejecting Field Stop
Telescope Exit Pupil Located on HAM
« Constant Rate Rotating Telescope

« Fold Mirror #1 Rotates with Telescope Assembly

« Constant Rate, Double-Sided HAM
Rotates at 1/2 Speed of Telescope Assembly Fold 2
(shown in plane)

« Off-Axis, 4X Afocal TMA
\ Fore

Collimated Output
to Fixed Aft Optics
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[image: image1.png]Energy On Detector Insensitive
to Microlens Array Tolerances

Tolerance Manufacturing Applied A 100% EOD
Parameter Capability Perturbation Diameter
Radius 1% 2% <0.1 pixel
Index 0.001 0.002 <0.1 pixel
Thickness 0.001" 0.002" <0.1 pixel
Decenter (x,y) 0.0004" 0.001" <0.1 pixel
Decenter (z) 0.0007" 0.001" <0.1 pixel

Vendors Consulted for Current Microlens Array Manufacturing Capabilities
CodeV Model Perturbed with Overly Conservative Values to Ensure
Comfortable Margin, Lower Risk and Reduced Cost

Effect of Relaxed Manufacturing and Alignment Tolerances on

100% Energy on Detector (EOD) Diameter Insignificant

100% EOD Maintained Until Image “Walks Off” Detector due to

Microlens Array to Detector Array Misalignments

Baseline Detector Sizes Provides Sufficient Margin to Maintain 100%
Energy even with Relaxed Perturbations







